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Abstract
A generalization of the negative Camassa–Holm hierarchy to 2 + 1 dimensions
is presented under the name CHH(2+1). Several hodograph transformations
are applied in order to transform the hierarchy into a system of coupled CBS
(Calogero–Bogoyavlenskii–Schiff) equations in 2 + 1 dimensions that pass the
Painlevé test. A non-isospectral Lax pair for CHH(2+1) is obtained through
the above-mentioned relationship with the CBS spectral problem.

PACS numbers: 02.30.Jr, 02.40.−k, 02.60.−x

1. Introduction

The seminal papers in which the Camassa–Holm equation was described [4, 5] have led to
much work related to equations with peakon solutions. In particular, in [12, 8, 15], the
authors include the Camassa–Holm equation within a wider class of equations with peakons.
The integrability of the Camassa–Holm equation, spectral problem, solutions, etc have been
studied in many papers in the last 10 years (see, for instance, [4, 8, 15]).

The Painlevé test [19] is usually presented as a powerful instrument to check the
integrability of an equation. Nevertheless, in [12] the limitations of the Painlevé test when
applied to Camassa–Holm-like equations are discussed.

The Painlevé property provides not only the basis for the Painlevé test, but also for the
singular manifold method [19]. When an equation passes the Painlevé test, the singular
manifold method can be applied to algorithmically construct the Lax pair [9, 10] and many
other properties of integrable systems such as Darboux transformations, τ -functions, etc. The
main problem with Painlevé methods is that the Painlevé property is non-invariant under
changes of independent and/or dependent variables. Often, finding the change of variables
that writes an equation in a form that passes the Painlevé test, is a question of luck or ability.

From the point of view of the spectral problem, the Lax pair for a partial differential
equation is usually found by inspection. Most frequently, a spectral problem is proposed and
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then the equations that satisfy this spectral problem are derived [18, 1, 6]. In contrast, the
singular manifold method has the attractive property that it allows us to start from a given
equation (that passes the Painlevé test) and derive its Lax pair in a very precise way. Our
conjecture is that if an equation is integrable, there must be a transformation that will let us
transform the equation into a new one in which the Painlevé test is successful and the singular
manifold method can be applied to derive the Lax pair.

In [8, 14], hodograph transformations were proposed as useful instruments to transform
peakon equations into equations that pass the Painlevé test. On the basis of this idea, in
section 2, we attempt to study the integrability of an n-component Camassa–Holm hierarchy
in 2+1 dimensions (which we will call CHH(2+1)) by means of several hodograph transforma-
tions that map this hierarchy in a system of n coupled CBS (Calogero–Bogoyavlenskii–Schiff
[3, 7]) equations in three independent variables that are different for each CBS component.
This result generalizes those obtained in [14], where reciprocal transformations between the
first component of the CHH(2+1) and CBS are studied.

The CBS equation in three dimensions has been proved to pass the Painlevé test [10]. In
the same reference, the singular manifold method was used to construct the Lax pair, which in
fact is a non-isospectral one [6, 10]. This knowledge of the spectral problem associated with
the CBS equation allows us to devote section 3 to reversing the hodograph transformations
and rewrite the spectral problem in the original variables. Thus, a non-isospectral Lax pair for
the CHH(2+1) hierarchy is obtained. The coincidences and differences between these results
and other spectral problems are discussed at the end of this section.

The conclusions are presented in section 4.

2. Camassa–Holm hierarchy in 2+1 dimensions

• As is well known [13], the negative Camassa–Holm hierarchy for a field u(x, t) can be
written as

ut = R−nux, R = J0J
−1
1 n � 1, (2.1)

where n is an integer number that is the order of the hierarchy and J0, J1 are the following
operators:

J0 = (∂3 − ∂), J1 = (u∂ + ∂u), ∂ = ∂

∂x
. (2.2)

For our purpose it is convenient to introduce n functions v1(x, t), . . . , vn(x, t) defined as

v1 = J−1
0 ux �⇒ J0v1 = ux

vj = J−1
0 J1vj−1 �⇒ J0vj = J1vj−1, j = 2, . . . , n.

(2.3)

Equation (2.1) can now be written simply as

ut = J1vn, (2.4)

and hence the negative Camassa–Holm hierarchy can be considered as the n + 1
equations (2.3) and (2.4) in n + 1 fields u, v1, . . . , vn.
Obviously, for n = 1, the system (2.3)–(2.4) reduces to

ut = 2u(v1)x + uxv1 u = (v1)xx − v1, (2.5)

which is the celebrated Camassa–Holm equation [5].
• The positive Camassa–Holm hierarchy [13] would be obtained through

ut = Rn(0), n � 1, (2.6)
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whose n = 1 component is

ut = J0J
−1
1 (0);

or equivalently

ut = J0v1 J1v1 = 0 �⇒ v1 = u−1/2,

which is the Dym equation [16] with an extra term (v1)x [6, 1].

2.1. Generalization to three dimensions

A simple generalization of (2.3)–(2.4) to three dimensions is as follows:

Uy = J0V1

J0Vj = J1Vj−1, j = 2, . . . , n,

Ut = J1Vn,

(2.7)

where U = U(x, t, y), Vj = Vj (x, t, y).
System (2.7) can also be written as

Ut = R−nUy. (2.8)

The equivalent positive hierarchy should be

Ut = RnUy, (2.9)

which can be trivially obtained from (2.8) by interchanging t and y. Consequently, in three
dimensions (2.8) contains both the negative and positive hierarchies. One can be obtained
from the other by interchanging the roles of t and y.

It is also necessary to point out that the first component of (2.7) can be written (by simply
putting V1 = my) as

(∂t − 2mxy − my∂x)(mxxx − mx) = 0

that is a generalization to 2 + 1 dimensions of the Fokas–Fuchssteiner–Camassa–Holm
equation [11] proposed in [6] and analysed in [14].

Reductions

• It is trivial to see that the negative Camassa–Holm hierarchy (2.1) would be obtained from
(2.8) through the reduction ∂

∂y
= ∂

∂x
.

• If we reduce (2.8) by setting ∂
∂t

= 0 we obtain

R−nUy = 0 �⇒ Uy = Rn(0)

which is the positive hierarchy (2.6) where t has been replaced by y.

Note that (2.8) is formally included in the Dym case of [6]. Nevertheless, the
generalization of the Camassa–Holm hierarchy that the authors construct explicitly in that
work is not (2.9) because it corresponds to n = 1 and U is a field with N components (see
equation (2.16) of this reference). Only the first components of both hierarchies (n = N = 1)

coincide.
Below we shall denote (2.7) by CHH(2+1) and prove through several hodograph

transformations that it can be transformed into a system that passes the Painlevé test.

2.2. First hodograph transformation

If we set

U = P 2, (2.10)



1290 P G Estévez and J Prada

we can write system (2.7) as

Py = (β1)x, (2.11)

J0Vj

2P
= (PVj−1)x, j = 2, . . . , n, (2.12)

Pt = (PVn)x, (2.13)

where we have defined

(β1)x = J0V1

2P
. (2.14)

The conservative form of (2.11) and (2.13) allows us, according to [14, 8], to define the
following hodograph transformation:

dX = P dx + PVn dt + β1 dy, Z1 = t, Y = y, (2.15)

The partial derivatives are now
∂

∂x
= P

∂

∂X
,

∂

∂t
= ∂

∂Z1
+ PVn

∂

∂X
,

∂

∂y
= ∂

∂Y
+ β1

∂

∂X
. (2.16)

The inverses of (2.15) and (2.16) are

dx = dX

P
− Vn dZ1 − β1

P
dY, t = Z1, y = Y, (2.17)

∂

∂X
= 1

P

∂

∂x
,

∂

∂Z1
= ∂

∂t
− Vn

∂

∂x
,

∂

∂Y
= ∂

∂y
− β1

P

∂

∂x
. (2.18)

With this hodograph transformation, system (2.11)–(2.14) becomes

PY = P(β1)X − PXβ1 (2.19)

PZ1

P 2
= (Vn)X (2.20)

1

2P
({P [P(Vj )X]X}X − (Vj )X) = (PVj−1)X, j = 2, . . . , n (2.21)

1

2P
({P [P(V1)X]X}X − (V1)X) = (β1)X. (2.22)

Nevertheless, (2.19)–(2.22) is not yet a system in which the Lax pair can be directly derived.
A new set of transformations is needed in order to write (2.19)–(2.22) in a form in which the
singular manifold method could be applied to derive the Lax pair.

2.3. Second hodograph transformation

• Let us take (2.21) for j = n:
1

2P
({P [P(Vn)X]X}X − (Vn)X) = (PVn−1)X,

and by substituting (2.20), the result is(
PXX

2P
+

1 − P 2
X

4P 2

)
Z1

= (PVn−1)X. (2.23)

The form of equation (2.23) suggests that we should introduce a new function H, defined
as

HX =
(

PXX

2P
+

1 − P 2
X

4P 2

)
, (2.24)
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which allows us to integrate (2.23) as

PVn−1 = HZ1 . (2.25)

• On the basis of (2.25), let us introduce Z2, . . . , Zn−1 new independent variables, such that
equation (2.25) can be extended through the following definition:

PVn−j = HZj
, j = 2, . . . , n − 1 �⇒ PVj = HZn−j

, j = 1, . . . , n − 2.

(2.26)

Note that (2.26) are hodograph transformations between each dependent variable Vj and
the corresponding independent variable Zn−j .

• Taking (2.21) for n − j ,
1

2P
({P [P(Vn−j )X]X}X − (Vn−j )X) = (PVn−j−1)X, j = 1, . . . , n − 2,

and by using (2.26)

1

2P

({
P

[
P

(
HZj

P

)
X

]
X

}
X

−
(

HZj

P

)
X

)
= (

HZj+1

)
X
. (2.27)

We can use (2.24) to obtain

PXX = 2PHX +
P 2

X − 1

2P
. (2.28)

By substituting (2.28) in (2.27), we have

HXXXZj
− 4HXZj

HX − 2HXXHZj
= 2HXZj+1 , j = 1, . . . , n − 2. (2.29)

Each of the equations of (2.29) is a CBS equation in the three variables X,Zj and Zj+1.
This equation has been studied by different authors (see [7, 3, 6, 10, 14]). This equation
can also be considered as a generalization to 2 + 1 dimensions of the AKNS (Ablowitz,
Kaup, Neweel, Segur) equation. Its Lax pair can be found through the singular manifold
method in [10] and it proves to be non-isospectral [6, 17, 10]. We shall use this result in
the next section.

2.4. Third hodograph transformation

• By substituting V1 = HZn−1

P
in (2.22), we have

HXXXZn−1 − 4HXZn−1HX − 2HXXHZn−1 = 2(β1)X. (2.30)

We now define a new variable Zn such that

β1 = HZn
, (2.31)

which is again a hodograph transformation between the dependent variable β1 and the
independent one Zn. With this transformation, (2.30) looks exactly like (2.29) for j = n.

HXXXZn−1 − 4HXZn−1HX − 2HXXHZn−1 = 2HXZn
. (2.32)

Thus, by combining (2.29) and (2.32), we have the following n − 1 CBS equations:

HXXXZj
− 4HXZj

HX − 2HXXHZj
= 2HXZj+1 , j = 1, . . . , n − 1. (2.33)

• Substitution of (2.31) in (2.19) gives us

PY = PHXZn
− PXHZn

, (2.34)

whose compatibility with (2.28) yields

HXXXZn
− 4HXZn

HX − 2HXXHZn
= 2HXY , (2.35)

which is again a CBS equation in the variables X,Zn and Y.
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2.5. Summary of the transformations

We now summarize the above results.
Let us start with the CHH(2+1) system given by (2.11)–(2.14). This is a system of n

fields V1, . . . , Vn and three independent variables: x, t and y. We have made the following
transformations:

(1)

dX = P dx + PVn dt + β1 dy, Z1 = t, Y = y. (2.36)

(2)

PXX = 2PHX +
P 2

X − 1

2P
(2.37)

PY = PHXZn
− PXHZn

(2.38)

PZ1 = P 2(Vn)X. (2.39)

(3)

HZn−j
= PVj , j = 1, . . . , n − 1. (2.40)

(4)

HZn
= β1. (2.41)

With these transformations, we obtain the following system:

HXXXZj
− 4HXZj

HX − 2HXXHZj
= 2HXZj+1 , j = 1, . . . , n − 1 (2.42)

HXXXZn
− 4HXZn

HX − 2HXXHZn
= 2HXY . (2.43)

We have now n CBS equations for just one field H and n + 2 independent variables: X, Y ,
Z1, . . . , Zn. It is fairly trivial to check that equations such as (2.42) pass the Painlevé test
[10]. Consequently, the above-described hodograph transformations map the CHH(2+1) to a
new system in which the Painlevé techniques (singular manifold method) can be applied. For
n = 1 this corresponds to the result obtained by Hone in [14].

Note that after the first reciprocal transformation, the system was (2.19)–(2.22) where
obviously P, Vi and β1 are considered as independent fields. The second and third hodograph
transformations

PVj = HZn−j
, j = 1, . . . , n − 1

β1 = HZn

imply that, for any of the n independent fields V1, . . . , Vn−1 and β1, we define one of the n
variables Z1, . . . , Zn, which consequently are as independent as the V1, . . . , Vn−1, β1 fields
are. Furthermore, in the appendix we will use the results of [10] to construct solitonic solutions
of (2.42) and (2.43) depending on the n + 2 independent variables: X, Y,Z1, . . . , Zn. The
main benefit of the second and third hodograph transformations is that they allow us to write
the equations in a form in which the Lax pair can be algorithmically derived through the
techniques of the singular manifold method.

We should remark that the hodograph transformation (2.36) is not defined for peakons.
Actually, as has been pointed in [8, 15], (2.10) breaks down when U is a Dirac delta function
because the square root of a distribution is not defined.
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3. Integrability and Lax pair for CHH(2+1)

In a recent paper by us [10], the singular manifold method [19] was applied to CBS to derive
its Lax pair. By using these results, the Lax pair for (2.42) is

ψXX =
(

HX +
λ

2

)
ψ. (3.1)

0 = Ej = −ψZj+1 + λψZj
− HZj

ψX +
HXZj

2
ψ, j = 1, . . . , n − 1. (3.2)

For (2.43), the spatial part is exactly the same, but the temporal part is

0 = En = −ψY + λψZn
− HZn

ψX +
HXZn

2
ψ. (3.3)

Furthermore, the compatibility condition between (3.1) and (3.2) implies that the spectral
problem is non-isospectral because λ satisfies

λX = 0, λZj+1 − λλZj
= 0. (3.4)

Analogously, the compatibility condition between (3.1) and (3.3) yields

λX = 0, λY − λλZn
= 0. (3.5)

Note that (3.1) is independent of the index j . Nevertheless, (3.2) can be considered as a
recursion relation for the derivatives of ψ with respect to each Zj . This allows us to take the
following combination:

0 = Enλ
−n +

n−1∑
j=1

Ejλ
−j

= −λ−nψY + λ1−nψZn
− λ−nHZn

ψX + λ−n HXZn

2
ψ

+
n−1∑
j=1

[
−λ−jψZj+1 + λ1−jψZj

− λ−jHZj
ψX + λ−j

HXZj

2
ψ

]
. (3.6)

It is easy to see that

n−1∑
j=1

[−λ−jψZj+1

]
+

n−1∑
j=1

[
λ−j+1ψZj

] = −λ1−nψZn
+ ψZ1 .

Therefore, we have

0 = ψZ1 − λ−nψY +
n∑

j=1

[
−λ−jHZj

ψX + λ−j
HXZj

2
ψ

]
. (3.7)

The combination of (3.4) and (3.5) gives us

λY − λnλZ1 = 0. (3.8)
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3.1. Inverse transformation

We can now come back to the original fields U and Vj as well as to the original independent
variables x, t and y. All we need is to perform the change [14]

ψ(X,Z1, . . . , Zn, Y ) =
√

Pφ(x, t, y). (3.9)

And, according to (2.18), we have

ψX =
√

P

(
φx

P
+

PX

2P
φ

)
ψXX =

√
P

(
φxx

P 2
+

[
PXX

2P
− P 2

X

4P 2

]
φ

)

ψZ1 =
√

P

(
φt − Vnφx +

PZ1

2P
φ

)
ψY =

√
P

(
φy − β1

P
φx +

PY

2P
φ

)
.

(3.10)

With these changes, (3.1) becomes

φxx

P 2
+

[
PXX

2P
− P 2

X

4P 2

]
φ =

(
HX +

λ

2

)
φ.

Or, by using (2.37) and (2.10)

φxx =
(

1

4
+

λ

2
U

)
φ, (3.11)

which is the spatial part of CHH(2+1). The temporal part can be obtained by using (3.10) in
(3.7). The result is

0 =
[
φt − Vnφx +

PZ1

2P
φ

]
− λ−n

[
φy − β1

P
φx +

PY

2P
φ

]

+
n∑

j=1

λ−j

[
−HZj

(
φx

P
+

PX

2P
φ

)
+

HXZj

2
φ

]
.

We now need to use (2.38) and (2.39) to obtain

0 =
[
φt − Vnφx +

P(Vn)X

2
φ

]
− λ−n

[
φy − β1

P
φx +

PHXZn
− PXHZn

2P
φ

]

+
n−1∑
j=1

λ−j

[
−HZj

(
φx

P
+

PX

2P
φ

)
+

HXZj

2
φ

]

− λnHZn

(
φx

P
+

PX

2P
φ

)
+ λ−n HXZn

2
φ,

which can be simplified to

0 = φt − Vnφx +
P(Vn)X

2
φ − λ−n

[
φy +

(
−β1

P
+

HZn

P

)
φx

]

+
n−1∑
j=1

λ−j

[
−HZj

(
φx

P
+

PX

2P
φ

)
+

HXZj

2
φ

]
.

By using (2.40) and (2.41), we have:

0 = φt − Vnφx +
P(Vn)X

2
φ − λ−nφy

+
n−1∑
j=1

λ−j

[
−Vn−j

(
φx +

PX

2
φ

)
+

P(Vn−j )X + PXVn−j

2
φ

]
,
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and simplifying

φt − λ−nφy −

Vn +

n−1∑
j=1

λ−jVn−j


φx +

1

2


Vn +

n−1∑
j=1

λ−jVn−j




x

φ = 0. (3.12)

Furthermore, by applying (2.18) to (3.8), we have the non-isospectral condition

λy − λnλt = 0. (3.13)

In sum, the Lax pair for the hierarchy CHH(2+1) of equations in 2 + 1 variables (2.7) can
be written as

φxx − λ

2
Uφ = 1

4
φ (3.14)

φt = λ−nφy + Aφx − Ax

2
φ, (3.15)

where

A =
n−1∑
j=0

[λ−jVn−j ], λy − λnλt = 0. (3.16)

We have proved in [10] the usefulness of the Lax pair (3.1)–(3.2) for solving CBS. Actually,
in [10] we have used the singular manifold method to obtain Darboux transformations for this
Lax pair. These Darboux transformations are the basis for the construction of an iterative and
algorithmic procedure described in [10] that allows us to obtain a rich collection of nontrivial
solutions. The inversion of the hodograph transformations (2.36)–(2.41) provides us the
corresponding solutions for CHH(2+1) and its Lax pair. It will be the subject of future work.

Remarks. Spectral problems similar to (3.10) have been considered in several papers [18, 1,
6, 13, 14]. More precisely,

• this Lax pair is included in the scattering problem presented in equation (1.1) of [6] and it
corresponds to the case that these authors call the Dym case. Nevertheless, CHH(2+1) is
not included in the cases that the authors presented explicitly because the generalization of
the Camassa–Holm hierarchy that they considered corresponds to n = 1 (interchanging t
and y) and U expanded as a polynomial of degree N − 1 in λ. Only the n = 1 component
of CHH(2+1) is equivalent to equation (2.21) of [6] (the N = 1 case). The Lax pair for
the n = 1 component of the hierarchy appears also in [14].

• The Lax pair considered in [13] for the negative Camassa–Holm hierarchy (2.3)–(2.4) can
be obtained through the reduction ∂

∂y
= ∂

∂x
. Equivalently, the Lax pair presented in the

same reference [13] for the positive Camassa–Holm hierarchy arises from the reduction
∂
∂t

= 0. In our notation, these 1 + 1 Lax pairs are

φxx =
(

λ

2
u +

1

4

)
φ

φt = Bφx − Bx

2
φ

B = λ−n +
n−1∑
j=0

[
λ−jVn−j

]
, for the negative hierarchy,

(3.17)



1296 P G Estévez and J Prada

and

φxx =
(

λ

2
u +

1

4

)
φ

φy = Cφx − Cx

2
φ

C = −
n−1∑
j=0

[λn−jVn−j ], for the positive hierarchy.

(3.18)

• Equation (3.18) corresponds to the N = 1 (interchanging t and y) case of [1] (which
generalizes [18]). Equation (3.17) is not included in this reference because expansions in
negative powers of λ were not considered there.

4. Conclusions

Here we have presented an extension of the n-component Camassa–Holm hierarchy to 2+1
dimensions whose n = 1 component is a generalization of the Fokas–Fuchsteiner–Camassa–
Holm equation. Although the Painlevé test cannot be applied to this system, we have found
a set of hodograph transformations that allows us to transform the original CHH(2+1) into
n coupled CBS equations that pass the Painlevé test. This result generalizes [14] for an
n-component hierarchy. The relationship between integrable systems and the Painlevé property
is once again established.

CBS is known to have a non-isospectral Lax pair. This Lax pair was used in section
3 to invert the hodograph transformations in order to obtain a non-isospectral Lax pair for
CHH(2+1). Note that the non-isospectral condition λy = λnλt depends on the order n of the
hierarchy.

The Lax pairs for the positive and negative 1 + 1 Camassa–Holm hierarchies can be
obtained through the reductions ∂

∂t
= 0 and ∂

∂y
= ∂

∂x
, respectively.
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Appendix

There are a lot of solutions of the coupled CBS equations (2.42) and (2.43) that can be
obtained by using the techniques of [10]. The simplest solution can be constructed through
the eigenfunctions of (3.1)–(3.3) with H = 0 and λ constant. These eigenfunctions can be
written as

ψ = exp


kX + ωY + ω

n∑
j=1

λ(j−n−1)Zj


 (A.1)

where ω is a totally arbitrary constant and

k2 = λ

2
According to [10], it allows us to construct the following singular manifold:

φ ∼ 1 + exp


2(kX + ωY + ω

n∑
j=1

λ(j−n−1)Zj )


 (A.2)
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which yields the following one-soliton solution:

H1-soliton = −2
φx

φ
. (A.3)

A two-soliton solution can be easily written by means of the same techniques as [10] (see
expressions (3.24) and (3.25) of this reference). The result is

H2-soliton = −2
τx

τ
(A.4)

where

τ = φ1φ2 − �2. (A.5)

φ1 and φ2 are singular manifolds of the form (A.2) corresponding to two different spectral
parameters λ1 and λ2 and two different values ω1 and ω2 of ω.

� = ψ1ψ2,x − ψ1ψ2,x

λ2 − λ1
(A.6)

which implies

τ ∼ 1 + ψ2
1 + ψ2

2 +

(
k1 − k2

k1 + k2

)2

ψ2
1 ψ2

2 (A.7)

where

ψ1 = exp


k1X + ω1Y + ω1

n∑
j=1

λ
(j−n−1)

1 Zj


 (A.8)

ψ2 = exp


k2X + ω2Y + ω

n∑
j=1

λ
(j−n−1)

2 Zj


 (A.9)

and

k2
1 = λ1

2
, k2

2 = λ2

2
.
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